Algorithms: DFS, STRONGLY
CONNECTED COMPONENTS,

FLOWS
Ola Svensson

c=PFL School of Computer and Communication Sciences

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 3

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 4

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time =5

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 6

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time =7

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 8

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 9

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/— 8/— —/—
b / /D/ S /
2/7
9/10
f
3/4 5/6 —/-
time = 10

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/— /11 —/—
b e
2/7
9/10
f
3/4 5/6 —/—
time = 11

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 —/—
e
2/7

9/10

f
3/4 5/6 —/-
time = 12

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7

9/10

f
3/4 5/6 —/—
time = 13

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7

9/10

f
3/4 5/6 14/—
time = 14

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7
9/10
3/4 5/6 14/15
time = 15

Lecture 15, 09.04.2024

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/16
2/7
9/10
3/4 5/6 14/15
time = 16

Lecture 15, 09.04.2024

Runtime Analysis

DFS(G)
for eachu € G.V
u.color = WHITE
time = 0
foreachu € G.V
if u.color == WHITE
DFS-VISIT(G, u)

Lecture 15, 09.04.2024

DFS-VISIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adju]
if v.color == WHITE
DFS-VISIT(v)
u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u

Runtime Analysis

DFS(G)
for eachu € G.V
u.color = WHITE
time = 0
foreachu € G.V
if u.color == WHITE
DFS-VISIT(G, u)

DFS-VIsIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adju]
if v.color == WHITE
DFS-VISIT(v)
u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u

> Color each vertex white takes time ©(V)

Lecture 15, 09.04.2024

Runtime Analysis

DFS(G)
for eachu € G.V
u.color = WHITE
time = 0
foreachu € G.V
if u.color == WHITE
DFS-VISIT(G, u)

DFS-VIsIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adju]
if v.color == WHITE
DFS-VISIT(v)
u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u

> Color each vertex white takes time ©(V)

> Note that DFS-VISIT is called once for each vertex (when it is colored gray

from white)

Lecture 15, 09.04.2024

Runtime Analysis

DFS-VIsIT(G, u)
DFS(G) time = time + 1
u.d = time
u.color = GRAY
u.color = WHITE for each v € G.Adj[u]

time = 0 i
if v.color == WHITE
foreachu € G.V DFS-VIsIT(v)

if u.color == WHITE
DFS-VISIT(G, u)

foreachu € G.V

u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u

> Color each vertex white takes time ©(V)

> Note that DFS-VISIT is called once for each vertex (when it is colored gray

from white)

> When DFS-VIsIT(u) is called the for loop runs at most {#neighbors of u}

times

Lecture 15, 09.04.2024

Runtime Analysis

DFS-VIsIT(G, u)
DFS(G) time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adj[u]
if v.color == WHITE
DFS-VISIT(v)
u.color = BLACK
time = time + 1
u.f = time

for eachu € G.V
u.color = WHITE
time = 0
for eachu € G.V
if u.color == WHITE
DFS-VISIT(G, u)

// discover u
// explore (u,v)

// finish u

> Color each vertex white takes time ©(V)

> Note that DFS-VISIT is called once for each vertex (when it is colored gray

from white)

> When DFS-VIsIT(u) is called the for loop runs at most {#neighbors of u}

times

» Therefore the total time DFS-VISIT is run is

Z {#neighbors of u} = ©(E)

ueV

Lecture 15, 09.04.2024

Runtime Analysis

DFS-VIsIT(G, u)
DFS(G) time = time + 1

for eachu € G.V u.d = time .
u.color = WHITE u.color = GRAY // discover u
) for each v € G.Adju] // explore (u,v)

time = 0
for eachu € G.V
if u.color == WHITE
DFS-VISIT(G, u)

if v.color == WHITE
DFS-VISIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

> Color each vertex white takes time ©(V)

> Note that DFS-VISIT is called once for each vertex (when it is colored gray
from white)

> When DFS-VIsIT(u) is called the for loop runs at most {#neighbors of u}
times

» Therefore the total time DFS-VISIT is run is

Z {#neighbors of u} = ©(E)
ueVv
Total Time: ©(V + E)

Lecture 15, 09.04.2024

PROPERTIES OF DFS

Lecture 15, 09.04.2024

QOutput of DFS

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that v is gray and v is white when
(u, v) is explored.

3/4 5/6

Lecture 15, 09.04.2024

Classification of edges

3/4 5/6

Lecture 15, 09.04.2024

Classification of edges

3/4 5/6

Lecture 15, 09.04.2024

Classification of edges

Back edge: (u,v) where u is a descendant of v

3/4 5/6

Lecture 15, 09.04.2024

Classification of edges

Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge

3/4 5/6

Lecture 15, 09.04.2024

Classification of edges

cc cUpe. e dep
Back edge: (u,v) where u is a descendant of v
Forward edge: (u,v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

3/4 5/6

Lecture 15, 09.04.2024

Classification of edges

Back edge: (u,v) where u is a descendant of v
Forward edge: (u,v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back/forward (we call them back)
edges, no cross edges. Why?

Lecture 15, 09.04.2024

Parenthesis theorem

For all u, v exactly one of the following holds

3/4 5/6

Lecture 15, 09.04.2024

Parenthesis theorem

For all u, v exactly one of the following holds

[u.d,u.f] and [v.d, v.f] are disjoint neither of u and v are
descendant of each other

3/4 5/6

Lecture 15, 09.04.2024

Parenthesis theorem
For all u, v exactly one of the following holds

[u.d,u.f] and [v.d, v.f] are disjoint neither of u and v are
descendant of each other

ud<v.d<v.f<u.fand v is a descendant of u

3/4 5/6

Lecture 15, 09.04.2024

Parenthesis theorem
For all u, v exactly one of the following holds

[u.d,u.f] and [v.d, v.f] are disjoint neither of u and v are
descendant of each other

ud<v.d<v.f<u.fand v is a descendant of u

v.d < u.d < u.f <v.f and u is a descendant of v.

3/4 5/6

Lecture 15, 09.04.2024

White-path theorem

Vertex v is a descendant of u if and only if at time u.d there is a path
from u to v consisting of only white vertices (except for u, which was
just colored gray)

3/4 5/6

Lecture 15, 09.04.2024

TOPOLOGICAL SORT
Application of DFS

Lecture 15, 09.04.2024

Topological sort

Definition

INPUT: A directed acyclic graph (DAG) G = (V, E)

OUTPUT: a linear ordering of vertices such that if (v, v) € E, then u
appears somewhere before v

Lecture 15, 09.04.2024

Getting dressed in the morning:

Lecture 15, 09.04.2024

Getting dressed in the morning:

in which order?

Lecture 15, 09.04.2024

PAGE 3

COMPUTER
SCIENCE

PREREQS
CPse 132

INTERMEDIATE. COMPLER CPSC 432
DESIGN, WITH A FOCUS ON

DEPENDENCY RESOLUTION.

h——

Sl =

First: when is a directed graph acyclic?

Lecture 15, 09.04.2024

First: when is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Lecture 15, 09.04.2024

First: when is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. First show that back-edge implies cycle

Lecture 15, 09.04.2024

First: when is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

Lecture 15, 09.04.2024

First: when is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge

Lecture 15, 09.04.2024

First: when is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge

Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C. At time v.d vertices in C form a white-path from v to v and hence u is a
descendant of v.

Lecture 15, 09.04.2024

Algorithm for topological sort

Lecture 15, 09.04.2024

Algorithm for topological sort

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Lecture 15, 09.04.2024

Algorithm for topological sort

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Example

Lecture 15, 09.04.2024

Algorithm for topological sort

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Example

~ —
(andershors) =(panis) = (shoes) TEORONTES
17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Lecture 15, 09.04.2024

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Lecture 15, 09.04.2024

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

> Can just output vertices as they are finished and understand that
we want the reverse of the list

Lecture 15, 09.04.2024

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

> Can just output vertices as they are finished and understand that
we want the reverse of the list

> Or put them onto the front of a linked list as they are finished.
When done, the list contains vertices in topologically sorted order.

Time:

Lecture 15, 09.04.2024

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

> Can just output vertices as they are finished and understand that
we want the reverse of the list

> Or put them onto the front of a linked list as they are finished.
When done, the list contains vertices in topologically sorted order.

Time: ©(V + E) (same as DFS)

Lecture 15, 09.04.2024

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?

Lecture 15, 09.04.2024

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?

> uis gray

Lecture 15, 09.04.2024

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?

> uis gray

> Is v gray, too?

Lecture 15, 09.04.2024

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?

> uis gray
> Is v gray, too?
> No, because then v would be ancestor of u which implies that

there is a back edge so the graph is not acyclic (by previous
Lemma)

Lecture 15, 09.04.2024

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?
> uis gray

> Is v gray, too?
> No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)
> Is v white?

> Then becomes descendant of u. By parenthesis theorem,
ud<vd<v.f<u.f

Lecture 15, 09.04.2024

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?
> uis gray

> Is v gray, too?
> No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

v

Is v white?
> Then becomes descendant of u. By parenthesis theorem,
ud<vd<v.f<u.f
Is v black?

> Then v is already finished. Since we are exploring (u, v), we
have not yet finished u. Therefore, v.f < u.f.

v

Lecture 15, 09.04.2024

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?
> uis gray

> Is v gray, too?
> No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

v

Is v white?
> Then becomes descendant of u. By parenthesis theorem,
ud<vd<v.f<u.f
Is v black?

> Then v is already finished. Since we are exploring (u, v), we
have not yet finished u. Therefore, v.f < u.f.

N

v

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for all u,v € C,
both u~» v and v ~ w.

Example:

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for all u,v € C,
both u~» v and v ~ w.

Example:

Is this a SCC?

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for all u,v € C,
both u~» v and v ~ w.

Example:

Is this a SCC? NO, because e.g. ¢+ b

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for all u,v € C,
both u~» v and v ~ w.

Example:

Is this a SCC?

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for all u,v € C,
both u~» v and v ~ w.

Example:

Is this a SCC? NO, because not maximal

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for all u,v € C,
both u~» v and v ~ w.

Example:

Is this a SCC?

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for all u,v € C,
both u~» v and v ~ w.

Example:

Is this a SCC? YES!

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for all u,v € C,
both u~» v and v ~ w.

Example:

A depiction of all SCCs of the graph

Lecture 15, 09.04.2024

Component Graph

For a digraph G = (V, E), its component graph GSCC = (VSCC ESCC) s defined by:
» VSCC has a vertex for each SCC in G;
> ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

Gscc

Q ()

Lecture 15, 09.04.2024

Component Graph

For a digraph G = (V, E), its component graph GSCC = (VSCC ESCC) s defined by:
» VSCC has a vertex for each SCC in G;
> ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

Lemma: GS€C is a DAG.

Lecture 15, 09.04.2024

Magic Algorithm

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Lecture 15, 09.04.2024

Magic Algorithm

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Graph G is the transpose of G:
» GT =(V,E),E" = {(u,v): (v,u) € E}.

> G' is G with all edges reversed.

Lecture 15, 09.04.2024

Magic Algorithm

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DFS as a separate SCC.

Graph G is the transpose of G:
» GT =(V,E),E" = {(u,v): (v,u) € E}.
> G' is G with all edges reversed.
Observations:
> Can create G in ©(V + E) time if using adjacency lists.
> G and G has the same SCCs.

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

: ®
f ©

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

: ®
f ©

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

: ®
f ©

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

: ®
f ©

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

/- -/~ 3/4 - -/~
a fl.)\ d
f ©

-/ —/—

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

/- -/~ 3/4 - -/~
a fl.)\ d
f ©

-/ —/—

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

/- -/~ 3/4 - 6/~
a fl.)\ d
f ©

-/ —/—

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

/- -/~ 3/4 - 6/~
a fl.)\ d
f ©

-/ —/—

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

-/ -/ 3/4 - 6/~
a fl.)\ d
f ©

—/— —/- 2/5 —-/— 7/8

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Sy —/- 3/4 1/- 6/9
a (b)
f (&

—/— —/- 2/5 —-/— 7/8

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

/- —/— 3/4 1/ 6/9
a (b)
i ®

By —/- 2/5 10/— 7/8

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Sy —/- 3/4 1/- 6/9
a O
f (&

—/— -/ 2/5 10/11 7/8

Lecture 15, 09.04.2024

Magic Algorithm B

2.
3.

SCC(G):

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

. /- 3/4 1/12 6/9
a (b)
i ®

—/- —/— 2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

. —/—
a (b)
i ®

-/ 13/—

2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

14/~ —/-
a (b)
i ®
—/— 13/—

2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B
2

. Compute GT
3.

Call DFS(G) to compute finishing times u.f for all u.

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).
Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

14/— 15/~
a (b)
i ®

—/— 13/—

2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

14/ — 15/16
a (b)
i ®

—/— 13/—

2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

14/ — 15/16
a (b)
i ®

17/— 13/—

2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

14/ — 15/16
a (b)
i ®

17/18 13/—

2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

14/19 15/16
a (b)
i ®

17/18 13/—

2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

14/19 15/16
a (b)
i ®

17/18 13/20

2/5 10/11 7/8

Lecture 15, 09.04.2024

4.

SCC(G):

Magic Algorithm B

2.
3.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

14/19 15/16
a (b)
G ®

17/18 13/20

2/5 10/11 7/8

Lecture 15, 09.04.2024

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

3/4 1/12 6/9

2/5 10/11 7/8

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Runtime analysis:

Lecture 15, 09.04.2024

SCC(G):

1.
2.
3.

4.

Call DFS(G) to compute finishing times u.f for all u.
Compute GT

Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).
Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT
3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Runtime analysis: Each step takes ©(V + E) so total running time is
O(V +E)

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT
3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Runtime analysis: Each step takes ©(V + E) so total running time is
O(V +E)

Why does it work?

SCC(G):
1. Call DFS(G) to compute finishing times u.f for all u.

2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
in order of decreasing u.f (as computed in first DFS).

4. Output the vertices in each tree of the depth-first forest
formed in second DF'S as a separate SCC.

Runtime analysis: Each step takes ©(V + E) so total running time is
O(V +E)

Why does it work? Intuition:

> The first DFS orders SCC's in topological order (recall GS¢C is
acyclic)

> Second DFS then outputs the vertices in each SCC

Formal proof in book

FLOW NETWORKS

Lecture 15, 09.04.2024

Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

Bern Neuchatel
2

Gruyere Lausanne

Geneve Morges

Lecture 15, 09.04.2024

Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

Bern Neuchatel
12

Gruyere Lausanne

Geneve

Source Sink

Lecture 15, 09.04.2024

Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

Bern Neuchatel . Capacity: at most 20 cheeses can be
12 ~ transferred from Neuchatel to Lausanne
.

Gruyere Lausanne

Geneve

Source Sink

Lecture 15, 09.04.2024

Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

Bern Neuchatel . Capacity: at most 20 cheeses can be
12 ~ transferred from Neuchatel to Lausanne
.

Gruyere Lausanne

Geneve

Source Sink

> a graph to model flow through edges (pipes)

Lecture 15, 09.04.2024

Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

Bern Neuchatel . Capacity: at most 20 cheeses can be
12 ~ transferred from Neuchatel to Lausanne
.

Gruyere Lausanne

Geneve

Source Sink

> a graph to model flow through edges (pipes)

> each edge has a capacity an upper bound on the flow rate (pipes
have different sizes)

Lecture 15, 09.04.2024

Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

Bern Neuchatel . Capacity: at most 20 cheeses can be
12 ~ transferred from Neuchatel to Lausanne
.

Gruyere Lausanne

Geneve

Source Sink

> a graph to model flow through edges (pipes)

> each edge has a capacity an upper bound on the flow rate (pipes
have different sizes)

» Want to maximize rate of flow from the source to the sink

Lecture 15, 09.04.2024

Tons of applications

Lecture 15, 09.04.2024

FIRE ESCAPE PLAN
Ground Floor

n
c
.9
4
T
O
o

o
T
(.
(@)
n
S
_I

Lecture 15, 09.04.2024

Flow Network (formally)

Lecture 15, 09.04.2024

Flow Network (formally)

> Directed graph G = (V,E)

Lecture 15, 09.04.2024

Flow Network (formally)

> Directed graph G = (V,E)

> Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)

Lecture 15, 09.04.2024

Flow Network (formally)

> Directed graph G = (V,E)
> Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)

> Source s and sink ¢ (flow goes from s to t)

Lecture 15, 09.04.2024

Flow Network (formally)

v

Directed graph G = (V, E)

\4

Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)

v

Source s and sink t (flow goes from s to t)

v

No antiparallel edges (assumed w.l.o.g. for simplicity)

Lecture 15, 09.04.2024

Why is “no antiparallel edges” w.l.o.g.?

Lecture 15, 09.04.2024

Why is “no antiparallel edges” w.l.o.g.?

1 11
@C@é
5 5

> If there are two parallel edges (u, v) and (v, u), choose one of them say (u, v)

Lecture 15, 09.04.2024

Why is “no antiparallel edges” w.l.o.g.?

1 1 0 1
@ o =
5 5
> If there are two parallel edges (u, v) and (v, u), choose one of them say (u, v)

> Create a new vertex v/

Lecture 15, 09.04.2024

Why is “no antiparallel edges” w.l.o.g.?

1 1 0 1
@ o =
5 5
> If there are two parallel edges (u, v) and (v, u), choose one of them say (u, v)

> Create a new vertex v/

> Replace (u, v) by two new edges (u,v’) and (v/, v) with
c(u,v') =c(v/,u) = c(u,v)

Lecture 15, 09.04.2024

Why is “no antiparallel edges” w.l.o.g.?

1 1 0 1
@ o =
5 5
> If there are two parallel edges (u, v) and (v, u), choose one of them say (u, v)

> Create a new vertex v/

> Replace (u, v) by two new edges (u,v’) and (v/, v) with
c(u,v') =c(v/,u) = c(u,v)

> Repeat this O(E) times to get an equivalent flow network with no antiparallel
edges.

Lecture 15, 09.04.2024

Definition of a flow

A flow is a function f : V x V — R satisfying:

Lecture 15, 09.04.2024

Definition of a flow

A flow is a function f : V x V — R satisfying:

Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)

Lecture 15, 09.04.2024

Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

J

flow into u flow out of u

Lecture 15, 09.04.2024

Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

J

flow into u flow out of u

Lecture 15, 09.04.2024

Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

J

flow into u flow out of u

Lecture 15, 09.04.2024

Value of a flow

Value of a flow f = |f|

=Y f(s,v) =Y f(v,9)

veVv vev
= flow out of source — flow into source

Lecture 15, 09.04.2024

Value of a flow

Value of a flow f = |f|

=Y f(s,v) =Y f(v,s)

veVv vev
= flow out of source — flow into source

Lecture 15, 09.04.2024

What's the value of this flow?

What's the value of this flow? 9

L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p

4. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path

> send flow along one of these paths and then we find another path
and so on

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t

5 3 7 4
@—)O—)O—)O—)@ with remaining capacity

= Push flow on p

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

3/5 3/3 3/7 3/4 Exists a path p from s to t

@—)O—)O—)O—)@ with remaining capacity

= Push flow on p

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

No path from s to t

3/5 @ with remaining capacity

I AN AN A
O—0O—0

©

and the flow is maximum

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
= Push flow on p

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
1/1 1/1 => Push flow on p

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

1/1 1/1

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
1/1 1/1 = Push flow on p

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
1/1 1/1 = Push flow on p

1/1 1/1

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

No path from s to t
with remaining capacity

1 % and the flow is maximum

11 11 @

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
= Push flow on p

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
= Push flow on p

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

No path from s to t
with remaining capacity

but the flow is not maximum

ey

Lecture 15, 09.04.2024

Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

No path from s to t
with remaining capacity

but the flow is not maximum

What went wrong? How can we fix it?

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

4. return f

Lecture 15, 09.04.2024

Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Lecture 15, 09.04.2024

Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v) —f(u,v) if(u,v)eE
cr(u,v) = ¢ f(v,u) if (v,u) € E
0 otherwise

Lecture 15, 09.04.2024

Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

Cf(“? V) = f(V, U) if (V’ U) €E D Amount of flow that

0 OtherWise can be reversed

Lecture 15, 09.04.2024

Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

Cf(“? V) = f(V, U) if (V’ U) €E D Amount of flow that

0 OtherWise can be reversed

Residual network:
Gr = (V, Ef) where Ef = {(u,v) € V x V : ¢r(u,v) > 0}

Lecture 15, 09.04.2024

Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and
c(u,v) — f(u,v) if(u,v)€eE

cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise

Gr

Lecture 15, 09.04.2024

Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and

c(u,v) — f(u,v) if (u,v) €E
cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise

Lecture 15, 09.04.2024

Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and
c(u,v) — f(u,v) if(u,v)€eE

cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise

Gr

Lecture 15, 09.04.2024

Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and

c(u,v) — f(u,v) if (u,v) €E
cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

4. return f

i Augmenting path = simple path from s to t

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

Exists augmenting path
4. return f & Ll

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G

3. augment flow f along p
Exists augmenting path p

4. return f with flow f, of value = min ca-
pacity on p =

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
f is updated by changing the
4. return f flow on an edge (u,v) by
fo(u,v) — fp(v, u) I

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
f is updated by changing the
4. return f flow on an edge (u,v) by
fo(u,v) — fp(v, u) I

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Gr

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Gr

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf|No augmenting path and flow
of value 2 is optimal
3. augment flow f along p

4. return f @

Lecture 15, 09.04.2024

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

. Initialize flow f to 0

while exists an augmenting path p in the residual network Gf |No augmenting path and flow
of value 2 is optimal

1
2
3. augment flow f along p
4

. return f @

Lecture 15, 09.04.2024

You

To do your
homework!

Study and
understand
Example!

&

L)
bl&lﬁk d
/

9/1\9
5
J

M?/A\%
Q=
/ "/* A\ A

A=)
/ \

o @ f 0)
—,, o

!

)
3
v

> Graphs fundamental object to study

> Two natural ways of traversing a graph: breadth-first search and
depth-first search

> Topological sort of acyclic graphs by applying DFS and then order
according to decreasing finishing times

> Strongly connected components

» Flow Networks

Lecture 15, 09.04.2024

