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Pseudocode of DFS

a
−/−

b
1/−

c
−/−

d −/−

e
−/−

f
−/−

g
−/−

h
−/−

time = 1
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Pseudocode of DFS
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−/−
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−/−

f
−/−

g
−/−
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−/−
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Pseudocode of DFS

a
2/−

b
1/−

c
−/−

d −/−

e
−/−

f
−/−

g
−/−

h
3/−

time = 3
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Pseudocode of DFS

a
2/−

b
1/−

c
−/−

d −/−

e
−/−

f
−/−

g
−/−

h
3/4

time = 4
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Pseudocode of DFS

a
2/−

b
1/−

c
−/−

d −/−

e
−/−

f
−/−

g
5/−

h
3/4

time = 5
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Pseudocode of DFS

a
2/−

b
1/−

c
−/−

d −/−

e
−/−

f
−/−

g
5/6

h
3/4

time = 6
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Pseudocode of DFS

a
2/7

b
1/−

c
−/−

d −/−

e
−/−

f
−/−

g
5/6

h
3/4

time = 7
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Pseudocode of DFS

a
2/7

b
1/−

c
8/−

d −/−

e
−/−

f
−/−

g
5/6

h
3/4

time = 8
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Pseudocode of DFS

a
2/7

b
1/−

c
8/−

d 9/−

e
−/−

f
−/−

g
5/6

h
3/4

time = 9
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Pseudocode of DFS

a
2/7

b
1/−

c
8/−

d 9/10

e
−/−

f
−/−

g
5/6

h
3/4

time = 10
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Pseudocode of DFS

a
2/7

b
1/−

c
8/11

d 9/10

e
−/−

f
−/−

g
5/6

h
3/4

time = 11
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Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
−/−

f
−/−

g
5/6

h
3/4

time = 12
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Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
13/−

f
−/−

g
5/6

h
3/4

time = 13
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Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
13/−

f
14/−

g
5/6

h
3/4

time = 14
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Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
13/−

f
14/15

g
5/6

h
3/4

time = 15
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Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

time = 16
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Runtime Analysis

▶ Color each vertex white takes time Θ(V )

▶ Note that DFS-Visit is called once for each vertex (when it is colored gray
from white)

▶ When DFS-Visit(u) is called the for loop runs at most {#neighbors of u}
times

▶ Therefore the total time DFS-Visit is run is∑
u∈V

{#neighbors of u} = Θ(E)

Total Time: Θ(V + E )
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Runtime Analysis

▶ Color each vertex white takes time Θ(V )

▶ Note that DFS-Visit is called once for each vertex (when it is colored gray
from white)
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PROPERTIES OF DFS
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Output of DFS
DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Tree edge: In the depth-first forest, found by exploring (u, v)
Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4
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Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back/forward (we call them back)
edges, no cross edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 15, 09.04.2024



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back/forward (we call them back)
edges, no cross edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 15, 09.04.2024



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back/forward (we call them back)
edges, no cross edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 15, 09.04.2024



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back/forward (we call them back)
edges, no cross edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 15, 09.04.2024



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back/forward (we call them back)
edges, no cross edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 15, 09.04.2024



Classification of edges
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Parenthesis theorem
For all u, v exactly one of the following holds

1 [u.d , u.f ] and [v .d , v .f ] are disjoint neither of u and v are
descendant of each other

2 u.d < v .d < v .f < u.f and v is a descendant of u

3 v .d < u.d < u.f < v .f and u is a descendant of v .

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4
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White-path theorem
Vertex v is a descendant of u if and only if at time u.d there is a path
from u to v consisting of only white vertices (except for u, which was
just colored gray)

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4
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TOPOLOGICAL SORT
Application of DFS
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Topological sort

Definition
INPUT: A directed acyclic graph (DAG) G = (V , E )

OUTPUT: a linear ordering of vertices such that if (u, v) ∈ E , then u
appears somewhere before v
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Example
Getting dressed in the morning:

in which order?
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Example
Getting dressed in the morning:

in which order?
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First: when is a directed graph acyclic?
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First: when is a directed graph acyclic?

Lemma
A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

v

u

T

T

T

B
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First: when is a directed graph acyclic?
Lemma
A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge

Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C . At time v .d vertices in C form a white-path from v to u and hence u is a
descendant of v .

v

u

T

T

T

B
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First: when is a directed graph acyclic?
Lemma
A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge
Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C . At time v .d vertices in C form a white-path from v to u and hence u is a
descendant of v .

v

u

T

T

T

B
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Algorithm for topological sort

Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v ∈ G .V
2. Output vertices in order of decreasing finishing times

Example
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Algorithm for topological sort
Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v ∈ G .V
2. Output vertices in order of decreasing finishing times

Example
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Time Analysis

Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v ∈ G .V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times
▶ Can just output vertices as they are finished and understand that

we want the reverse of the list
▶ Or put them onto the front of a linked list as they are finished.

When done, the list contains vertices in topologically sorted order.

Time: Θ(V + E ) (same as DFS)
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Topological-Sort(G):
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Correctness
Need to show that if (u, v) ∈ E then v .f < u.f
When we explore (u, v) what are the colors of u and v?

▶ u is gray
▶ Is v gray, too?

▶ No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

▶ Is v white?
▶ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f
▶ Is v black?

▶ Then v is already finished. Since we are exploring (u, v), we
have not yet finished u. Therefore, v .f < u.f .
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STRONGLY CONNECTED COMPONENTS
(A magic algorithm)
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What is a Strongly Connected Component?
Definition: A strongly connected component (SCC) of a directed graph
G = (V , E ) is a maximal set of vertices C ⊆ V such that for all u, v ∈ C ,
both u { v and v { u.

Example:

a b c d e

f g h i j

Lecture 15, 09.04.2024



What is a Strongly Connected Component?
Definition: A strongly connected component (SCC) of a directed graph
G = (V , E ) is a maximal set of vertices C ⊆ V such that for all u, v ∈ C ,
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What is a Strongly Connected Component?
Definition: A strongly connected component (SCC) of a directed graph
G = (V , E ) is a maximal set of vertices C ⊆ V such that for all u, v ∈ C ,
both u { v and v { u.

Example:

a b c d e

f g h i j

Is this a SCC? NO, because e.g. c ̸{ b
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What is a Strongly Connected Component?
Definition: A strongly connected component (SCC) of a directed graph
G = (V , E ) is a maximal set of vertices C ⊆ V such that for all u, v ∈ C ,
both u { v and v { u.

Example:

a b c d e

f g h i j

Is this a SCC? NO, because not maximal
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What is a Strongly Connected Component?
Definition: A strongly connected component (SCC) of a directed graph
G = (V , E ) is a maximal set of vertices C ⊆ V such that for all u, v ∈ C ,
both u { v and v { u.

Example:

a b c d e
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What is a Strongly Connected Component?
Definition: A strongly connected component (SCC) of a directed graph
G = (V , E ) is a maximal set of vertices C ⊆ V such that for all u, v ∈ C ,
both u { v and v { u.

Example:

a b c d e

f g h i j

Is this a SCC? YES!
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What is a Strongly Connected Component?
Definition: A strongly connected component (SCC) of a directed graph
G = (V , E ) is a maximal set of vertices C ⊆ V such that for all u, v ∈ C ,
both u { v and v { u.

Example:

a b c d e

f g h i j

A depiction of all SCCs of the graph
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Component Graph
For a digraph G = (V , E), its component graph GSCC = (V SCC, ESCC) is defined by:
▶ V SCC has a vertex for each SCC in G;
▶ ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

G
a b c d e

f g h i j

a b c d e

f g h i j

GSCC
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Component Graph
For a digraph G = (V , E), its component graph GSCC = (V SCC, ESCC) is defined by:
▶ V SCC has a vertex for each SCC in G;
▶ ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

G
a b c d e

f g h i j

a b c d e

f g h i j

GSCC

Lemma: GSCC is a DAG.
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Magic Algorithm
SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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Magic Algorithm
SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.

Graph GT is the transpose of G :
▶ GT = (V , E ), ET = {(u, v) : (v , u) ∈ E}.

▶ GT is G with all edges reversed.

Observations:
▶ Can create GT in Θ(V + E ) time if using adjacency lists.
▶ G and GT has the same SCCs.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.



Magic Algorithm

a b c d e

f g h i j

−/− −/− −/− 1/− −/−

−/− −/− −/− −/− −/−

Lecture 15, 09.04.2024

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

−/− −/− −/− 1/− −/−

−/− −/− 2/− −/− −/−

Lecture 15, 09.04.2024

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

−/− −/− 3/4 1/− −/−
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

−/− −/− 3/4 1/− 6/−

−/− −/− 2/5 −/− −/−
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

−/− −/− 3/4 1/− 6/−

−/− −/− 2/5 −/− 7/−
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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f g h i j
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

−/− −/− 3/4 1/− 6/9
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

−/− −/− 3/4 1/12 6/9
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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f g h i j

−/− −/− 3/4 1/12 6/9
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

14/− 15/− 3/4 1/12 6/9
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

14/− 15/16 3/4 1/12 6/9

−/− 13/− 2/5 10/11 7/8

Lecture 15, 09.04.2024

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

14/− 15/16 3/4 1/12 6/9

17/− 13/− 2/5 10/11 7/8
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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a b c d e

f g h i j

14/− 15/16 3/4 1/12 6/9
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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14/19 15/16 3/4 1/12 6/9
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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14/19 15/16 3/4 1/12 6/9
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
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4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.



Magic Algorithm

a b c d e

f g h i j

14/19 15/16 3/4 1/12 6/9

17/18 13/20 2/5 10/11 7/8

Lecture 15, 09.04.2024

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.



Analysis

Runtime analysis:

Each step takes Θ(V + E ) so total running time is
Θ(V + E )

Why does it work? Intuition:
▶ The first DFS orders SCC’s in topological order (recall GSCC is

acyclic)
▶ Second DFS then outputs the vertices in each SCC

Formal proof in book
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.
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Flow Network
Transfer as much cheese as possible from Gruyere to Lausanne
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▶ a graph to model flow through edges (pipes)
▶ each edge has a capacity an upper bound on the flow rate (pipes

have different sizes)
▶ Want to maximize rate of flow from the source to the sink
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have different sizes)
▶ Want to maximize rate of flow from the source to the sink
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Flow Network (formally)

s

v1

v2

v3

v4

t
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3

3
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1

3

2

3

▶ Directed graph G = (V , E )
▶ Each edge (u, v) has a capacity c(u, v) ≥ 0 (c(u, v) = 0 if (u, v) < E)

▶ Source s and sink t (flow goes from s to t)
▶ No antiparallel edges (assumed w.l.o.g. for simplicity)
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Why is “no antiparallel edges” w.l.o.g.?

u v

1

5

⇒ u v
v ’

1 1

5

▶ If there are two parallel edges (u, v) and (v , u), choose one of them say (u, v)

▶ Create a new vertex v ′

▶ Replace (u, v) by two new edges (u, v ′) and (v ′, v) with
c(u, v ′) = c(v ′, u) = c(u, v)

▶ Repeat this O(E) times to get an equivalent flow network with no antiparallel
edges.
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Definition of a flow

s

v1

v2

v3

v4

t

0/

3

0/

2

1/3

1/3

1/3

1/2

0/

1
1/3

2/3

1/2

1/2

1/3

1/3

A flow is a function f : V × V → R satisfying:

Capacity constraint: For all u, v ∈ V : 0 ≤ f (u, v) ≤ c(u, v)

Flow conservation: For all u ∈ V \ {s, t},∑
v∈V

f (v , u)︸          ︷︷          ︸
flow into u

=
∑
v∈V

f (u, v)︸          ︷︷          ︸
flow out of u
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Value of a flow

s

v1

v2

v3

v4

t

0/3

0/2

0/3

0/3

0/2

0/1
0/3

0/2

0/3

Value of a flow f = |f |

=
∑
v∈V

f (s, v) −
∑
v∈V

f (v , s)

= flow out of source − flow into source
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What’s the value of this flow?

9
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What’s the value of this flow? 9
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L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM
Ford-Fulkerson Method
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The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

Basic idea:
▶ As long as there is a path from source to sink, with available

capacity on all edges in the path
▶ send flow along one of these paths and then we find another path

and so on
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The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

Basic idea:
▶ As long as there is a path from source to sink, with available

capacity on all edges in the path
▶ send flow along one of these paths and then we find another path

and so on
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The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

Basic idea:

▶ As long as there is a path from source to sink, with available
capacity on all edges in the path

▶ send flow along one of these paths and then we find another path
and so on
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The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

Basic idea:
▶ As long as there is a path from source to sink, with available

capacity on all edges in the path

▶ send flow along one of these paths and then we find another path
and so on
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The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

Basic idea:
▶ As long as there is a path from source to sink, with available

capacity on all edges in the path
▶ send flow along one of these paths and then we find another path

and so on
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Applying the basic idea to examples
▶ As long as there is a path from source to sink, with available capacity on all

edges in the path
▶ send flow along one of these paths and then we find another path and so on

s t
5 3 7 4
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Applying the basic idea to examples
▶ As long as there is a path from source to sink, with available capacity on all

edges in the path
▶ send flow along one of these paths and then we find another path and so on

s t

1

1

1

1
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Applying the basic idea to examples
▶ As long as there is a path from source to sink, with available capacity on all

edges in the path
▶ send flow along one of these paths and then we find another path and so on

s t
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1

1

1

1

What went wrong? How can we fix it?
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Applying the basic idea to examples
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f
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Residual network
▶ Given a flow f and a network G = (V , E )
▶ the residual network consists of edges with capacities that represent

how we can change the flow on the edges

Residual capacity:

cf (u, v) =


c(u, v) − f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

Amount of capacity left

Amount of flow that
can be reversed

Residual network:

Gf = (V , Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0}
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Examples
Residual network: Gf = (V , Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0} and

cf (u, v) =

c(u, v) − f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

G and f

s t

1/1

1

1

1/1

1/1

Gf

s t

Lecture 15, 09.04.2024



Examples
Residual network: Gf = (V , Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0} and

cf (u, v) =

c(u, v) − f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

G and f

s t

1/1

1

1

1/1

1/1

Gf

s t

1

1

1

1

1

Lecture 15, 09.04.2024



Examples
Residual network: Gf = (V , Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0} and

cf (u, v) =

c(u, v) − f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

G and f

s

v1

v2

v3

v4

t

1/3

2/2

1/3

2/3

2/2

1/1

2/3

1/2

1/3

Gf

s

v1

v2

v3

v4

t

Lecture 15, 09.04.2024



Examples
Residual network: Gf = (V , Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0} and

cf (u, v) =

c(u, v) − f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

G and f

s

v1

v2

v3

v4

t

1/3

2/2

1/3

2/3

2/2

1/1

2/3

1/2

1/3

Gf

s

v1

v2

v3

v4

t

2

2

2

1

2

1

1 1

1

1

1

2

2

2

1

Lecture 15, 09.04.2024



The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

0/1

0/1

0/1

0/1

0/1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f
Augmenting path = simple path from s to t

G and f

s t

0/1

0/1

0/1

0/1

0/1

Gf

s t

1

1

1

1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f Exists augmenting path p

with flow fp of value = min ca-
pacity on p

G and f

s t

0/1

0/1

0/1

0/1

0/1

Gf

s t

1

1

1

1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f Exists augmenting path p
with flow fp of value = min ca-
pacity on p

G and f

s t

0/1

0/1

0/1

0/1

0/1

Gf

s t

1/1

1

1

1/1

1/1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f f is updated by changing the
flow on an edge (u, v) by
fp(u, v) − fp(v, u)

G and f

s t

0/1

0/1

0/1

0/1

0/1

Gf

s t

1/1

1

1

1/1

1/1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f f is updated by changing the
flow on an edge (u, v) by
fp(u, v) − fp(v, u)

G and f

s t

1/1

0/1

0/1

1/1

1/1

Gf

s t

1/1

1

1

1/1

1/1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

1/1

0/1

0/1

1/1

1/1

Gf

s t
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

1/1

0/1

0/1

1/1

1/1

Gf

s t

1

1

1

1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

1/1

0/1

0/1

1/1

1/1

Gf

s t

1

1

1

1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

1/1

0/1

0/1

1/1

1/1

Gf

s t

1

1/1

1/1

1/1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

1/1

0/1

0/1

1/1

1/1

Gf

s t

1

1/1

1/1

1/1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

1/1

1/1

1/1

0/1

1/1

Gf

s t

1

1/1

1/1

1/1

1

Lecture 15, 09.04.2024



The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

1/1

1/1

1/1

0/1

1/1

Gf

s t
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

G and f

s t

1/1

1/1

1/1

0/1

1/1

Gf

s t

1

1

1

1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

No augmenting path and flow
of value 2 is optimal

G and f

s t

1/1

1/1

1/1

0/1

1/1

Gf

s t

1

1

1

1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

No augmenting path and flow
of value 2 is optimal

G and f

s t

1/1

1/1

1/1

0/1

1/1

Gf

s t

1

1

1

1

1
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Summary

▶ Graphs fundamental object to study

▶ Two natural ways of traversing a graph: breadth-first search and
depth-first search

▶ Topological sort of acyclic graphs by applying DFS and then order
according to decreasing finishing times

▶ Strongly connected components

▶ Flow Networks
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